In ZSW’s internal organisational structure, the focus is placed on the two business divisions "Photovoltaics" or "Electrochemical Energy Technologies" and "Energy Policy and Energy Carriers". The head of each division is a member of the board. These business divisions are organised into ten departments.
In the course of day-to-day research, projects and tasks are nevertheless also worked on across departments so that we can provide our customers with greater thematic diversity and optimal synergy effects. For example, the consultation and testing services relating to photovoltaic storage systems are jointly provided by the two departments "Photovoltaics: Modules Systems Applications (MSA)" and "Accumulators (ECA)".
The administrative departments encompassing administration, public relations, finance, controlling, HR and organisation are consolidated in the central "Finance, HR and Legal" department under the direction of the Executive Chairman.
The summer heat in 2018, inspiring the choice of “Heißzeit” (“hot age”) as Germany’s Word of the Year in 2018, is not the only clear indication that climate change has significantly adverse consequences – not only for agriculture, but also in particular for the energy industry and other areas of the economy. It is becoming increasingly noticeable for society.
With its work at various levels, the Systems Analysis research department is actively shaping the transformation processes required to achieve the Paris climate protection goals (limiting warming to between 1.5 and 2° Celsius). Strategic Systems Analysis works intensively at the interface between science and policy. In providing policy advice, for example, it takes on evaluation and monitoring tasks in order to identify progress and obstacles, explore solution options and develop new, effective instruments to support the energy transition and climate protection at national and regional levels. This is supplemented by potential and development analyses at the technology level and profound knowledge from innovation research in order to identify robust future paths and derive noregret strategies.
The Simulation and Optimisation team is increasingly focussed on the technical level and uses methods from the machine learning field for a diverse range of applications – from optimising processes in photovoltaic production to image recognition for developing technical systems to protect endangered bird species from wind turbines. The Wind Energy team is working closely together with the WindForS research cluster to build and commission the world’s first wind energy research test site in mountainous and complex terrain in order to advance the energy transition at this level in the future through new research results. This also includes accompanying nature conservation research, which is a separate research focus at the test field.
Overview of our topics
Energy transition & Systems Optimisation
Overview of our topics
Thin-film technologies can help reduce manufacturing costs for photovoltaic modules that tap solar power to generate electricity. The ZSW and an industry partner have successfully rolled out CIGS technology. Now we are working hard to deliver the next generation in photovoltaics (PV), tandem solar modules. Highly efficient, flexible and light, these modules are cheaper to make. Their efficiencies can range beyond the real-world efficiency limit of the predominating crystalline silicon PV technology. This is achieved by combining two solar cells made of different materials, each with a different absorption range, to make the most of the solar spectrum. The ZSW uses stacked cells that pair a perovskite solar cell with a silicon, CIGS or another perovskite cell. Perovskite technology also lends itself to low-cost printing options.
Seeking to gain deeper insight into solar cells and their manufacturing processes, the ZSW first conducts fundamental research in typical labs, and then scales this work up to a pilot plant where factory-like conditions prevail. It is able to produce modules on glass up to a size of 30 x 30 cm², mainly with inline processes very similar to those in real-world factories. This enables us to rapidly transfer the latest research outcomes and processes to industrial production lines. We develop roll-to-roll processes for thin-film modules on flexible substrates such as polymer or metal foils up to 30 cm wide and of any length. Their primary use case is in integrated photovoltaics: PV systems mounted on building facades, overhead orchards and in vehicle roofs harbor great potential. In many cases, they provide added benefits such as weatherproofing and shade.
Drawing on many years’ experience developing and characterizing thin-film solar modules, we handle a wide range of process engineering and material analysis tasks for our customers.
Ensuring the quality and stability of photovoltaic (PV) modules and an efficient use of solar power in the energy supply system are the two major focus areas of the department and its customers. Based on 30 years of experience with testing PV modules made of crystalline silicon (c-Si) and thin-film materials, investigations into the energy yield and long-term stability of PV modules and systems are conducted in the Solab module test laboratory. Analyses of quality issues affecting the polymer-based back sheets of modules form a new focus. The affected modules are examined both in the test laboratory and directly on-site in the solar farm.
Our consultancy expertise not only encompasses quality control for PV modules and impact analyses of disruptive factors (climate, mechanical loads, soiling and electrical voltage), but also inspections (“due diligence”) of large-scale PV installations and PV production facilities on behalf of financing banks, project developers and operators.
Photovoltaic systems make a significant contribution to sustainable power generation. Appropriate linking with electrical storage systems, sector coupling and load shifting increase the local use of solar power, relieve the distribution networks and contribute to a decentralised balance of power generation and consumption. Analyses of corresponding potentials as well as the development of algorithms for the optimised operation of generators, storage systems and loads, including suitable charging management for e-mobility, are therefore further topics addressed by the research department. The department advises on the development and testing of corresponding algorithms. In cooperation with ZSW’s Systems Analysis department, forecasts of generation, load and flexibility are provided for optimised grid operation, the exchange of data between grid operators and for the energy market.
The core expertise of the Renewable Fuels and Processes department is in the production of renewable fuels in the context of Power-to-X (P2X) as well as the realisation of closed material cycles, for example with phosphorus recycling processes.
Our chemical engineering expertise is applied to the development of application-oriented technology modules for the electricitybased production of hydrogen and synthetic fuels, which are then constructed and tested on a technical scale. We develop scalable materials and production methods for electrolysers suitable for series production and have developed our own electrolysis block and system technologies up to the megawatt range. We offer our customers a wide range of testing opportunities both in ZSW’s own laboratories and in real environments, such as our research platform at the Grenzach-Wyhlen Power-to-Hydrogen site. We also develop processes for an efficient renewable supply of CO2, for example from biomass or air, as a further core element of P2X processes and have many years of experience in the field of P2X synthesis processes, including methane and methanol.
Thanks to our engineering and systems expertise, we have already built three of our own Power-to-Gas and electrolysis plants on the 25 kWel, 250 kWel and 1 MWel scale at ZSW and provide consulting services to industry customers on everything from basic engineering and commissioning of commercial plants to subsequent technology monitoring. Besides our P2X activities, we develop innovative processes related to residual materials utilisation and raw materials recycling. For example, we are researching concepts to recycle phosphorus and recover raw materials from plastic waste.
Overview of our topics
The ECG department is researching electrodes in polymer electrolyte membrane fuel cells (PEMFC), electrolysers and electrochemical high-power storage devices with aqueous electrolytes. The aims are to increase power density and service life, as well as to reduce costs. In order to increase power density and reduce the precious metal requirement of PEMFC, the department optimises both the composition and microstructure of the catalyst layers. Its expertise includes microstructural analyses and analyses of the polymer distribution in the electrodes of the membrane electrode array (MEAs).
Experiments are being carried out with various types of nanostructured nickel materials for alkaline water electrolysis, for high-power storage systems with aqueous-alkaline electrolytes and for the production of bifunctional oxygen electrodes. High activities and cycle stabilities have already been demonstrated. Of particular importance is the development of a manganese oxide high-power electrode with a strong cycle stability in very alkaline electrolytes.
The team has many years of experience and the necessary infrastructure to take new technological approaches and quickly verify and demonstrate them in the laboratory. Due to the close cooperation with other ZSW departments, extensive experimental investigations on model electrodes and model cells using modelling and simulation techniques as well as tests in largeformat cells and stacks can be carried out efficiently.
Overview of our topics:
"MEAs, catalysts and electrodes"
"H2 & water electrolsys"
"Alternative storage technologies"
The research department is specialised in the development of polymer electrolyte membrane fuel cell (PEMFC) technology with the focus on the construction, characterisation and simulation of fuel cells stacks and components and the construction of prototypes, as well as the development of production and test technologies. The power output ranges from a few watts up to 100 kWel. Fuel cells can be optimised in terms of their performance, service life, efficiency and compactness. Among other things, this includes investigating and forecasting ageing processes and failure analyses. We also focus on developing manual and automated manufacturing technology and characterising PEMFC components, cells and stacks, including fuel cells suitable for vehicles.
Modelling and simulating processes in fuel cells enables us to rapidly optimise component structures and operating conditions. This also includes the development and establishment of completely new approaches using advanced simulation software that is verified by using conclusive hardware and experiments under realistic conditions. For example, the water management within the gas diffusion electrodes (GDL) and gas distribution structures is validated using μ-CT scanning. Using this system, GDL structures, including their water content, can also be investigated in a compressed state. In addition, neutron and synchrotron radiography and tomography techniques developed with the Helmholtz Centre Berlin (HZB) are available for visualising components, cells and stacks, whereby the temporal and spatial resolutions of these are among the best in the world.
Overview of our topics:
"Components"
"Modelling & simulation"
"Stack technology"
For over 20 years, the ECS research department has been operating a fuel cell test centre with over 30 fully automated test rigs from 0.1 to 160 kilowatts for professional round-the-clock characterisation of fuel cell stacks, systems and system components. The focus is on testing service life, overall efficiency and robustness. Endurance tests on fuel cell stacks provide particularly valuable information which we evaluate by means of extensive analytics as well as complex methods for fault analysis. The test data archive now includes over 360,000 operating hours.
Many years of research work at ZSW have gone into developing fuel cell systems and system components for stationary systems, on-board and emergency power supplies and vehicle systems. The scope of services encompasses complete prototypes, including their control and hybridisation with batteries and DC/AC converters. For the most part, safety assessments, packaging studies and product certifications are carried out as part of industry projects. Publicly funded projects lead to findings that are available to the general public.
ECS also explores hydrogen with a view to its use as a transportation fuel. The research department, with its deep understanding of fuel cell technology and thus the utilisation of hydrogen, is involved in the development of the European hydrogen infrastructure through several projects. These involve compliance with international quality standards for hydrogen fuelling stations (SAE J2601/ CEP) with regard to their acceptance pursuant to DIN EN 17127 and ensuring compliance with the hydrogen quality required for fuel cell operation pursuant to DIN EN 17124.
The ECM department develops materials and processes for the next generation of lithium-ion batteries, including alternative storage technologies such as sodium-ion and post-lithium systems with magnesium or calcium. The substitution of critical raw materials and the recycling of battery materials are further important aspects.
A unique selling point is the ability to scale up powder synthesis to pilot scale. As part of the »Powder-Up!« project funded by the German Federal Ministry of Education and Research, the set-up of a pilot plant for the synthesis of cathode materials in the 10 kg to 100 kg range is being driven forward. The aim is to establish a modular, industry-oriented research production line for the manufacture of competitive cathode materials for lithium-ion batteries. The technical centre, which was built at full speed in 2023, will go into operation in September 2024.
ECM is developing new processes for electrode manufacturing in an effort to avoid toxic solvents and use water-based PFAS-free binders. A new pilot plant for dry processing with extruder, direct coating and calendering has been successfully installed. The electrodes will be evaluated in small pouch or cylindrical cells in the 18650 and 21700 formats. For the winding cells, the focus is on adapting new production processes to optimise the cell design in terms of energy content and performance.
For the evaluation of new cells and for damage analyses, the department specialises in the further development of post-mortem analyses and the further development of inline methods. These are essential for understanding ageing processes, potential safety risks and for optimising cell design.
Overview of our topics:
"Materials research" & "Post-mortem analysis" II "Development of electrodes & full cells" II "New focuses"
The series production of large lithium-ion cells, such as those used in electrical vehicles or stationary storage systems, places particular demands on the stability and precision of processes. The higher their quality and reproducibility, the greater the reliability, durability and cost-effectiveness of the storage systems.
The research department’s work focuses on operating a pre-competition “Research platform for the industrial production of large lithium-ion cells,” which maps the near-production overall manufacturing process for hardcase cells (PHEV-1 cells, >25 Ah). The focus in this regard is on studies of the interaction of cell chemistry, cell design and manufacturing technology in terms of quality, reliability and manufacturing costs as well as issues around inline sensors, manufacturing tolerances and cost-efficient workflows. With new materials and components, the goal is to evaluate usability and quality at an industrial scale.
The main responsibility of the ECP team is to optimise industrial production processes as part of industrial orders and research projects, or verify advanced cell chemistry in sample series of standard cells. Research expertise covers all production-related aspects, from system development to improving individual steps, right up to quality assurance processes. Furthermore, the team has essential consultancy expertise around cell manufacturing and cost considerations through by now several years of experience in operating the pilot system.
Overview of our topics:
The research department investigates and develops electrochemical energy storage systems. To ensure that accumulators are safe and efficient even under the most extreme conditions, the department’s work focuses on characterising them under various operating conditions and investigating their behaviour with operating failures and in accident situations. The areas of application of the batteries include stationary energy storage systems and electrical grids, portable devices and electrified drive trains – whether for travel over land or water, or in the air.
The electric battery test serves to test the functionality of cells, modules and systems, measure their performance and determine their expected service life under defined loads and environmental conditions. Boundary loads or destructive tests are used to assess the reactions of and potential dangers posed by batteries in the event of extreme damage as well as their resistance to various abusive conditions and operating errors. One focus here is on suppressing the propagation of failures in the system and extinguishing or controlling fires.
The centrepiece of the battery system engineering comprises the thermal and electrical modelling and simulation of cells and battery systems, battery management and battery level identification. Research looks at model-based algorithms in order to determine the battery state (state of charge and ageing), predict the system performance, ensure optimal charge control – especially under fast-charging conditions, and improve energy management. Further research looks at the influence of external parameters such as ripple currents or mechanical compression forces on performance and service life.
Overview of our topics: